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In  this paper an infinite waving sheet is used to model a micro-organism swim- 
ming either parallel to a single plane wall, or along a channel formed by two such 
walls. The sheet surface, which undergoes small amplitude waves, can represent 
either a single flagellum or the envelope of the tips of numerous cilia. Two dif- 
ferent solutions of the equations of motion are presented, depending upon whether 
or not the wave amplitude is small compared with the separation distances 
between the sheet and walls. It is found that the velocity of propulsion is bounded 
by the velocity of wave propagation by the sheet. Both the propulsive velocity 
and rate of working by the sheet increase as the separation distances decrease. 
However, it is demonstrated that suitable alterations in wave speed or wave 
shape can fix the rate of working while still causing increases in propulsive velo- 
city. Reductions in propagated wave speed, i.e. beat frequency, are particularly 
effective in this regard. 

1. Introduction 
In  recent years, the self-propulsion of micro-organisms has received increasing 

attention. Virtually all such studies to date have considered a single organism 
swimming in an otherwise undisturbed fluid of infinite extent. However, of 
great practical interest to the cell biologist, and obstetrician and gynaecologist, 
are situations in which micro-organisms are not physically isolated. During 
microscopic examination, the presence of a coverslip often constrains them to 
swim in a thin lamina of fluid of thickness the order of an organism length. 
Indeed, it has been speculated that this proximity to the coverslip may be re- 
sponsible for the apparent discrepancy between existing hydrodynamic theories 
of self-propulsion and photographic data. Micro-organisms may be closely 
bunched together in suspension. Moreover, there exist instances, e.g. the case of 
spermatozoa in vivo, in which they are required to swim in close proximity to 
solid boundaries, possibly even narrow channel-like passages. It is, therefore, 
of great physical and physiological interest to consider the influence of nearby 
solid boundaries on self-propulsion at  very low Reynolds number. 

Taylor (1951) used a two-dimensional waving sheet in his pioneering study of 
the locomotion of an organism possessing a single flagellum, e.g. a spermatozoon 
and many protozoa. Blake (1971) also used a sheet as an envelope model for the 
propulsive effect of beating, tightly bunched cilia on the surface of a micro- 
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FIGURE 1. Waving sheet in channel. The wave velocity propagated by the sheet is -ce,. 
Viewed in a fixed frame of reference, the wave crests appear to translate with velocity 
( V - c )  e,. 

organism. Both these studies considered only isolated sheets. Reynolds (1965) 
used Taylor’s sheet and approach to consider the effect of arigid flat wall adjacent 
to the sheet. These analyses all make use of the assumption of small amplitude 
waves to apply boundary conditions expanded about the mean planes of the 
wavy sheets. Thus, a limitation on Reynolds’ results is the requirement that the 
wave amplitude be small compared with the mean separation distances between 
the wavy sheet and the adjacent flat walls, both above and below it. The cases 
of self-propulsion in close proximity to a single wall, or in a narrow two-dimen- 
sional channel, are therefore excluded. 

This paper considers a general wavy sheet swimming between two flat walls, 
cf. figure 1. Use of an infinite two-dimensional sheet to simulate the movements 
of a three-dimensional organism of finite length and width is, of course, a con- 
siderable simplification, which underestimates the spatial rate of decay of the 
hydrodynamic effects of an organism’s motion. Por a real organism swimming in 
a real three-dimensional fluid this rate of decay is greater t’han if the organism’s 
effects on the fluid are constrained artificially to decay in two dimensions only. 
The two-dimensional model effectively treats the parallel swimming at a given 
distance from a wall of a very large number of organisms whose motions, 
being in phase, can reinforce one another: a problem with a certain biophysical 
interest in its own right. The model is put forward here, however, with the princi- 
pal aim of indicating possible qualitative trends that may be applicable even 
to the motion of a single organism. 

Other simplifications are that only periodic wave forms can be considered and 
that end effects, such as the presence of an inert head, are excluded. Indeed, 
both the swimming velocity and rate of working of a micro-organism depend 
upon its finite size. Nevertheless, this model is useful in suggesting the qualita- 
tive nature of wall effects upon propulsion of a micro-organism. We shall be 
interested here in the extent to which the wall separation distances influence the 
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swimming velocity and rate of working, and how variations in the wave shape 
and propagated wave speed alter these influences. Detailed information, regard- 
ing swimming trajectories, for example, is beyond the scope of this approach. 

Use of the wavy-sheet model requires that the fluid equations of motion be 
solved in the regions above and below the sheet. When the mean separation 
distances between the sheet and the two walls are of equal magnitude, the 
‘upper’ and ‘lower’ problems are, thus, similar. If, however, one of the walls is 
relatively close to  the sheet and the other is not, then different problems must 
be posed, solved and combined for the upper and lower regions. We shall examine 
all such possibilities here. 

We consider a sheet propagating a transverse wave in the negative-x direction 
with wave speed c. This gives rise to a translation of all points on the sheet with 
‘propulsive’ velocity V in the positive-x direction. Viewed in a co-ordinate 
frame fixed in space, the apparent wave speed of the sheet is thus ( V -  c)  e,. 
Letting (xo,yo) be a point on the sheet surface, as seen in the fixed frame, we 
consider 

xo = x, + a cos k[x ,  + (c - V )  t ]  + d sin k [x, + (c - V )  t ] ,  

yo = b sin k[x, + (c - V )  t ] .  (1)  1 
I n  this ‘Lagrangian’ representation of the sheet surface (x,,O) is the mean 
position of (xo, yo). The path of (xo, yo), seen in a frame translating with velocity 
Vez, is an ellipse inclined to the x axis a t  angle 4 tan-1[4bd/(a2 + d2 - b2)].  Al- 
though this surface representation is different from Taylor’s, his lowest-order 
results, which are of interest here, are obtained for the case a = d = 0. Non- 
zero d and a enable us to model a slightly more general flagellar beat, or the 
ciliary symplectic metachronal wave discussed by Blake. Clearly u(xo,  yo) = dxo/dt 
and v(xo,y0) = dyo/dt. It will prove convenient to work in a co-ordinate frame 
in which the crests of the waves on the sheet do not appear to translate. Hence 
we introduce z = II: + (c  - V )  t and have. in the z frame, 

zo = z ,  +a  cos kz, + d sin kz,, yo = b sin kz,,. (2) 

(3) } 
Thence, u(zo ,  yo) = c - B + c[ - ak sin kz, + dk cos kz,], 

v(z0, yo) = c(bk)  cos kz,. 

The unit outer normal n to the sheet is given by 

n = e,[ T bk cos kz,  + O(bk)3] + e,[ 5 1 + O ( t ~ k ) ~ ] ,  (4) 

where the upper and lower signs refer to the upper and lower surfaces of the sheet, 
respectively. The local stress Q exerted by the fluid on the sheet is then 

o = e, [ ( - p  + 2 p g )  ( T bkcos kz,+ . . .) +p au av 

Characteristic of a wavy sheet swimming between walls is the general inability 
of the boundary conditions on velocity completely to determine the motion. 
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FIGURE 2. Some examples of wavy-sheet shapes, all with d = 0. (a)  ka  = 0, kb = 0.5.  
(6 )  ka  = 0.5,  kb = 0.5.  ( c )  ka  = -0 .5 ,  kb = 0.5. (d )  ka  = 0.25, kb = 0.5. ( e )  ka  = -0.25, 
kb = 0.5, ( f )  ka  = 0.5, kb = 0.25. 

Dynamical considerations, in addition to kinematical ones, must be invoked. 
The net pressure difference between upstream and downstream infinity must 
be specified. We shall assume here that this difference is zero. Since the sheet will 
be swimming a t  constant velocity, we expect the average force on the sheet per 
wavelength (and unit depth) to vanish. This force F is t,he sum of contributions 
from the upper and lower sheet surfaces: 

9 = (a), + (a)1= 0, (6) 

where angular brackets indicate an average over a wavelength. The average stress 
q,, per sheet wavelength exerted by the fluid on the walls is 

Since the Reynolds number is small, and there is no externally applied pressure 
gradient, the momentum theorem requires 

( Q ) U , l +  (%)u,l = 0. (8) 

If M is the local moment on the sheet due to fluid reactions above and below it, 

= M ( O , y , ) + ~ ; ' ( z 0 - z ~ ) A a y ( z ~ , y ~ ) d z ~ +  0 ..., (9) 

where ha, and Aay are the x and y components of Aa = aU+q, and ds is the 
element of sheet arc length. Moment equilibrium of the sheet requires 

( M )  = 0. (10) 
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We shall have recourse to all these conditions in the subsequent development. 
Finally E ,  the average rate of working per wavelength by the sheet on the fluid, 
is t'he sum of contributions from the upper and lower surfaces: 

E = ((u. AQ)c2,,~*o,>. (11) 

2. Biharmonic analysis 
O(i) ,  thus b < h,,h,. An appropriate 

length scale here for changes in both the z and y directions is the wavelength 
Bnlk, and we introduce the following dimensionless variables: 

Consider now the case h,k 2 0 ( 1 ) ,  h,k 

z" = kz,  y" = ky, J = k@/c, 

.ii ze u / c ,  v" = tl/C, p = (p-pa)/& 

€ < 1, 6 = 0(1), d < 0(1), d , <  O(1).  

eii = ka, €6 = kb, ed = kd; 

Here @is the stream function andp the pressure, p a  being the pressure at z = _+ co. 
For the very small Reynolds number of interest, the following problem results: 

(12) I V 4 $  = 0, G = a$/ay", v" = -aJ/az", 
a p p z  = a(V%,h)/ag, a p p g  = - a(VzJ)/az, 

go = e6sinZm,, 2, = z"~+e(acosz"~~+ddsinz"~), 

G(.z,,~,) = I -  T7+e(-dsinzm+dcosznl), v"(.z,,~",) = ~ ~ " C O S Z ~ , ,  ] (13) 

qz, K,) = .ii(x", - K,) = V"(z", K,) = q a ,  - K,) = 0, p(  * 00) y") = 0. 

Solution of this problem proceeds just as in the analyses by Taylor and Reynolds 
or, equivalently, by Blake. The dependent variables are expanded in ascending 
powers of the small parameter E ,  and the boundary conditions a t  (z",,y",) are 
expanded in Taylor series about the mean position (Zn1, 0). In  each equation, the 
coefficient of en is equated to zero for each n. A hierarchy of biharmonic problems 
results, with kinematic boundary conditions applied on the planes y" = 0, 
y" = K,andy" = -hz.  

In  the following development, we shall consider a separation distance K, 
equal to k, or - K 2 ,  as necessary. Letting a subscript denote the power of e of 
interest, we have at 'zero order' 

V 4 J ,  = 0, 

(14) 

(15) 

1 a@,(z", 0 ) p g  = 1 - q), a?p,(a, 0 ) p z  = 0, 

a@,(z, K)/ag = 1, a?p,(z", K)/az" = 0. 

Thus J ,  = g +  l&72/2K-y") .  

Since there are no externally applied forces acting here on the sheet or walls, 
we take ro = 0. 

The 'first-order' problem is 
V4J1 = 0, (16) 

(17) 

(18) 

(191, (20) 

aJ,(z, o)/ag = - - G sin Z" + d cos 2, 

a?pl(z, o)/az" = - 6 cos z", 

a?p,(E, K)pg = a$,(z", K)/az" = 0. 
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We obtain 

$,(Z,y") = [(d1y"+8,)sinP+(C",y"+D,) cosZ]sinhy" 

+ [(8,y" - I )  sin x" + 0, y" cos Z] cosh y", (21) 
p,(Z, y") = 2[((7, sin Z- 6, cos Z) sinh y" + (0, sin Z- I??, cos Z )  cosh y"], (22) 

6 sinh2 E + ii [sinh E cosh h - E ]  
sinh2 h - h2 with 6, = 9 

6[sinh k cosh h + i] + 562 
sinh2 h - 5 2  

8, = - (E ,+ i i )  = J 

d[sinh h cosh h - h] 
(71 = - 

sinh2 - h 2  
3 

dsinh2 E 
sinh2 h - h2 ' 

0, = a-a, = 

We have taken 8, = 0, just as previously; when the flows in both the upper and 
lower regions are biharmonic, i.e. kh 2 O( I), then propulsion is of second order in E .  

Now to determine E, we need consider only the z-independent terms in the 
boundary conditions for Q2 at y" = 0 and y" = h. These are 

62[sinh2h + k2] + 2&[sinh h cosh h - h] 
sinh2 h - hz = E+gP+d2-  +fn(z), (23) 

8$P2(Z) Q/ag = 0. (24) 
We can introduce an expression for $, analogous to equation (21) for $,) but 
we must also include the eigensolutions 2,ij+a2g2. Thence, from (23) and (24), 

] -2g2k. (25 )  
sinh2 h + 6 2  sinh h cosh h - h 

sinh2h-h2 . 
Note that a2 cannot be determined from the kinematics of the problem. Since 
we are generally interested in h, .$. h,, we have two expressions for c) cf. ( 2 5 ) ,  and 
thus two values of a2. Consider now the force equilibrium of the sheet, cf. (6). 

(26) 
To lowest order, 

Thus @2u = gZ = s2. Thence, since the upper and lower solutions must yield the 
same value of R, we obtain 

- - 
9. e, = (pck)  2e2(.92u - Bz) = 0. 

g -  ,., 
1 h2 sinh2 h, + h2, - sinh2 h2 + hi] 

2 -  2(h, + h,) (a [sinh2h, - h, sinh2E2 - hi 
sinh h, cosh h, - h, 

sinh2 h, - h2, 
sinh h2 Gosh h, - h2 

sinh2 h, - hi 
- 

])-y (G2+d2). (28) 

1 e2 

(Se 
6, sinh2 E 2  + hi 

- 2(h,+h,) 2 sinh2E,- h2, 2 sinh2h2-hg 
sinh2 h, + hZ, 

sinh h, cosh h, - El 
sinh2 h, - ht 

€ 2 8  - - +- 
sinh h, cosh h, - g2 

sinh2 E 2  - hg 
€2 + h, + ab" [b, 



Propulsion of micro-organisms 39 

The average rate of working is to lowest order 

E = (pC2k)E2 
6, [sinh h, cosh h, + h,] + 266h2, + (6, +d2) [sinh h, cosh h - h,] 

sinh2 h, - h2, 
g2[sinh 6, cosh 6, + h,] + 2666; + (a2 +J2)  [sinh h, cosh &, - i,] 

sinh2 h, - hi 1. (29) + 
Regarding (27)-(29)) several points are worth noting. The existence of a non-zero 
for finite 6, $. E ,  means that a 2, torque will tend to turn a sheet of finite 
thickness away from the near wall. The centre of the channel h, = k, is thus 
the ‘preferred’ position, at  which ,2, = ,O, cf. (27). If, on the other hand, one wall is 
removed to infinity, say h, -+ - 00 with h, finite, then g2+ 0 as l/i2. In  both these 
situations, then, the torque vanishes. 

Note that the d2 term in (28) is independent of h. The proximity of walls does 
not alter the effect of the particle path inclination on propulsion. Of course, as 
El --f -+ co, 

&+ *@(62+266-62-d2), (30) 

(31) +E/pc2k -+ e2(g2 + 6, +d2) ,  
the values obtained by Blake. Blake noted that transverse and longitudinal 
surface oscillations tend to propel an isolated sheet in opposite directions, 
antiparallel or parallel to the direction of the metachronal wave, respectively. 
From (28) we note that the presence of walls does not alter this tendency. How- 
ever, the relative importance of transverse oscillations is amplified. For example, 
when d = 0,  e 2 q  = +e2(6 + 256 - 62) for the isolated sheet. Correspondingly, if 
h, -+ -co and h, = 2, then e2v2 = &2(1.8762+2-5466- ti,) for a non-isolated 
sheet. We shall defer a discussion of propulsive efficiency to $5 .  

3. Lubrication-theory analysis 
We next examine the case h,k < 1, h,k < 1. Since the biharmonic anaIysis is 

valid only when b < h,,h2, the wave amplitude would have to be very small 
indeed ! We wish to consider b = O(h,, h,), the caseofa sheetswimming in a narrow 
channel. Here an appropriate length scale for changes in the y direction is b 
(or h, or h,) rather than 27rlk. For purposes of comparison we shall choose b, 
and define the following dimensionless variables : 

h z k2, f) y /b ,  j3 ( p  -pm) b2k/pC, 

.ti = u/c,  0 = v / (bk )c .  

In  these variables, the governing equations become 

aalae + aqag = 0, ) 
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with boundary conditions 

An expansion in E is again suggested. We obtain to lowest order 

Equations (34)-(36) are the familiar equations of lubrication theory. Note that 
the velocities due to z-wise stretching of the sheet are of higher order and do not 
appear. We obtain 

Here we have used the expansion 

retaining only the first term since we are working to lowest order. Equations (38) 
and (43) then yield a 'Reynolds equation' for pressure: 

Integrating yields 
d@, 
d2 (f i  +sin 213 

2,- (12 + 6 q )  sin2 _ -  - 
9 

A,,+& 12 - 6%) cos 2 
i i o = o  d ( E  - 1 )  i (fi+sin2)2 

cos 2 2(A0L + 12 + 6%) + i [( 12 + 6%) f i  + AO] + 
2(fiZ - 1 ) 2  &+sin$ 

(45) 

(46) 
2fi (Jo + 12 + 6%) + ( 12 + 6%) f i  + ito d2 + 

2@- 1)2 
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Since we must consider both the upper and lower regions, we are left with five 
constants E, Â,,, Â ,,, and Pol, to be obtained from dynamical considerations. 
Lowest-order force equilibrium of the sheet, cf. (5) and (6),  yields 

9 * e, = W E {  - @O>U + @0111 = 0. (48) 

Application of the momentum theorem to the fluid, cf. (S), yields, to lowest order, 

(($+pocos9) ) -((%) >, = 0 ,  

-(($+Bocos2) )+(($I c=-b ,) 1 = 0. 

@,,ti& u a9 P=hl 

Vo.Pd 1 

(49) 

Equations (47), (49) and (50) determine t, x,,, and Ao,: thence, from (41) and 
(48), FotL = pol = 0. Notably, the coefficient of the third term in (46) vanishes, so 
that p0 is a simply periodic function of x (though no longer proportional to 
a(&,, go)  as in the biharmonic case). We obtain 

(51) 

(52 )  

(Q- I)i(2iij+ l)+(Q- 1)4(2h9+ I )  
(2@ + 1)  (@ - 1)3 (6; + 2) + ( 2 Q  + 1)  (Xi - I)+ (hi f 2 )  ' 

- 18&(2k;+ I) [(& l )++(L;-  I)*] 
( 2 Q  + 1) (@ - 1)3 (L; + 2 )  + (269 + 1) (ti - l)*(Q + 2) 

% = 3  

Aou = 

h 

and an analogous expression for A,. The averagerate of working is, to lowest order, 

If h, =# h,, it can be shown that a net torque will be exerted on the sheet, tend- 
ing to turn it away from the near wall. This torque vanishes when h, = h,; 
thus, the centre of the channel is the 'preferred' position, just as in the biharmonic 
case. Thence, in dimensional variables, 

'vo= 3 
c (h/b)2+2' (54) 

Equations (51) or (54) clearly indicate that to lowest order the velocity of pro- 
pulsion is bounded by the wave speed. This contradicts Reynolds' conclusion 
I?& 5 3c, a result obtained, however, in the improper limit E --f kh -+ 0 of the 
biharmonic analysis. By analogy with the results for an isolated sheet, we might 
expect that the next-lowest-order correction to V is negative, cf. Taylor and 
Blake. 

It is noteworthy here that, since b = O(h) ,  the longitudinal components of the 
sheet surface oscillations do not influence V to lowest order, a result different 
from that in the biharmonic case, cf. (28) .  The sheet here is effectively sinusoidal. 
Clearly the biharmonic limit kh -+ 0,  b < h should coincide with the lubrication- 
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FIGURE 3. Convergence of the biharmonic propulsive velocity to the limiting lubrication- 
theory result. In this limit we fix blh < 1 and let h + 0 for fixed k.  

theory limit blh --f 0. Indeed, for a sheet a t  the centre of a channel, we have from 
(28), (29), (51)  and (53) ,  fixing k ,  

lim (7k) E = lim ( - )B  E 
= 6($ 2 1  0, b / h Q  2pc L kh-0 2pC2k 

b Q h  

where the subscripts L and B denote lubrication-theory and biharmonic results 
respectively. The transition from the biharmonic behaviour, which is strongly 
dependent upon a and d, to the lubrication-theory result is best seen by noting 
that as kh + 0 

Figure 3 illustrates the transition for propulsive velocity. 

4. Combined biharmonic-lubrication-theory problem 
Let us now consider the case h,k < 1, h2k 2 O(1). Here the swimming sheet 

is very close to the upper wall only. We may therefore expect lubrication theory to 
be applicable in the upper region, and a biharmonic analysis to be appropriate 
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in the lower one. The assumption e < 1 provides the bridge between the two 
approaches. From the lubrication-theory analysis we note that the dimensional 
average streamwise force per wavelength acting on the upper sheet surface is 

The biharmonic analysis in the lower region yields 

Owing to the thin upper region, propulsion is of ‘zero order’ in E ,  and the first 
term in (57) will not vanish. However, the force on the lower sheet surface is one 
order of magnitude smaller than that on the upper surface. Hence the lowest- 
order force equilibrium for the sheet yields 

Using the expressions for a0 and $jO) cf. (42) and (46), in (62) and the momentum 
theorem for the upper region, cf. (8), we obtain 

<(aao/ay^ + @o cos ̂Z)Ci,, s,,>u = 0. (59) 

Note that (60) is identical with the lubrication-theory result for h, = h,, cf. (54). 
That is, when one wall is removed to infinity, propulsive velocity is obtained 
from the solution for the region between the sheet and the near wall, regardless 
of the distance to that wall. 

When transverse force equilibrium, moment equilibrium and the rate of 
working of the sheet are considered, again only the lubrication-theory region 
contributes to lowest order. Thus 

It is readily shown that the lowest-order transverse force equilibrium of the 
sheet is satisfied provided that pou = 0. However, a torque once again appears, 
tending to rotate the entire sheet away from the near wall. This is in contrast to 
the entirely biharmonic problem with A2 3 - co, where no such torque appears. 
It is therefore suggested that, when the sheet is placed relatively close to a 
single wall, it will tend to be rotated away from the wall; but when sufficiently 
distant from the wall (and, of course, parallel to it) the sheet will continue to 
swim parallel to the wall. When placed between the two walls of a channel of 
finite width, the sheet will tend to swim along the centre of the channel. Finally, 
there exists the same coincidence of biharmonic and lubrication-theory limits 
here as was demonstrated in 3 3 for a sheet in a channel. 

5. Practical considerations 
The analyses in 592-4 indicate that, when a wavy sheet is in proximity to a 

flat wall or walls, both the propulsive velocity and rate of working can be signifi- 
cantly higher than when the sheet is isolated. It would seem unlikely that most 
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micro-organisms could sustain their propagated wave forms when faced with, say, 
a tenfold increase in energy output, as can occur here. More likely the beat would 
be altered. It is, therefore, appropriate to consider propulsive velocity at  a fixed 
rate of working, allowing the propagated wave speed c and wave shape to vary 
with separation distance from the wall. We shall consider a swimming sheet 
either near a single wall, or at  the centre of a channel of finite width. The rate 
of working shall remain fixed at  its value for a sheet in an infinite fluid. In  allow- 
ing for variations in wave shape, a reasonable constraint is that an effective 
length of the infinite sheet remains constant. Since bk << 1, the length I of a finite 
sheet containing n wavelengths is 

1 = ( 2 ~ / k ) n [ l + $ ( b k ) 2 + O ( b k ) ~ ]  

= ( 2 + U  n,[l+ Hbmk,)2 + O(b,k,)41, (62) 

where the subscript 03 refers to an isolated sheet. Note that, to O(bk)2, 1 is in- 
dependent of the values of a and d. The pertinent rate of working is now nE, an 
effective total for the sheet. We shall take d = 0, it being readily shown that this 
value maximizes the modulus of the propulsive velocity subject to constant nE. 
In  addition, we shall introduce two simplifications. First, we assume that the 
small amplitude restriction is strictly maintained, i.e. bk = b, k,. Second, we 
shall consider separately variations in wave shape and propagated wave speed. 

Consider now A V  = V / ( e 2 Q m  and AE = nE/(nE),, where V is the lowest- 
order component of the propulsive velocity, i.e. @V, or V,, for the biharmonic or 
lubrication-theory problems, respectively. In  general, A V is a function of 
a, b,  k, c ,  h, a,, b,, k,, and c,, AE a function of these parameters and, 
additionally, n and n,. From (62) and the requirement bk = b,k,, we have 
nln, = k/k,. Our constraint on the rate of working becomes AE = 1. These 
two conditions yield a unique relation among the wave parameters c/c,, klk,, 
a, a, and kh, where CL = a/b. If we fix k = k, and a = a,, we can then obtain 
c /c ,  as a function of a and kh. That is, we can determine the change in propa- 
gated wave speed that satisfies the energy output constraint. We can subsequently 
obtain the change in propulsive velocity, viz. AV.  I f  we wish to investigate 
changes in wave shape, we fix c = c ,  and k = k,, determining a and thence AV 
as functions of kh and a,. 

5. I. Biharmonic analysis 

Using (28)) (20) and (62)) we define 

1 
sinh2kh-(kh)2 I1 1 +2am+a2,’ 

sinh2 kh + (kh)2 
sinh2 kh - (kh)2 

sinh kh cosh kh - kh 
-a2+2a 

(63) 

1 I- 1+a$’ 
(64) 

AE, = nE,/(nE), 

kh + sinh kh cosh kh + 2a(kh)2 + a2[sinh kh cosh k7~ - kh] 
sinh2 kh - (kh)2 
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e 
a 

Bihmiionic t h e x y ,  hX = O  I 

FIGURE 4. Lowest-order variation of A V  = V / V ,  and c/c, with kh for a sheet in a chan- 
nel, with the rate of working fixed at  that for an isolated sheet. Here b = b, ,  k = k, and 
a = a,. The c/c, curve for a = 2 lies so close to the a = 0 curve that it is omitted for the 
sake of clarity. 

theory. hl, = O  + I F  1 
Lubrication 

AE, = nEW/(nE), 
kh + sinh kh cosh kh + 2a (kh)2 + a2 [sinh kh cosh kh - kh] 

sinh2 kh - (kh)2 

(65) 
1 

X 
2( 1 +a%) ’ 

where the subscripts C and W refer to a sheet at  the centre of a channel or near a 
single wall, respectively. For fixed wave size and shape, c/c, is obtained from (64) 
or (65); thence (63) determines AV. Typical results for a sheet in a channel are 
shown in figure 4. It should be noted that, since b < h, both the denominator 
and numerator of A V  and A E  approach zero in the biharmonic limit kh --f 0. If 
the b dependence is removed by factoring, then A V  and A E  become singular 
as 1/(hk)2 and l / (kh)3 ,  respectively, indicating the inapplicability of this limit. 
Note also that, with decreasing kh, c/c, decreases, while A V  increases for a 2 0 
but decreases when a > 0. The corresponding behaviour for a sheet near a single 
wall is very similar, the values of I A V I and c/c, being somewhat larger. 

If variations in wave shape are of interest, then (64) or (65) is solved for a. 
Although these equations are quadratic in a, we choose that value of a which 
allows A V  --f 1 as kh --f 00. For certain values of kh and a,, complex solutions for 
a are obtained, indicating that in those circumstances the fixed rate of working 
constraint is not obtainable. Typical results for a sheet near a single wall are 
shown in figure 5. Summarizing these results, for decreasing kh, A V  increases 
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FIGURE 5 .  Lowest-order variation of A V and 01 = a/b with kh for a sheet near a single wall, 
with the rate of working fixed at  that for an isolated sheet. Here c = c,, b = b, and 
k = k,, so that a varies. Curves not extending throughout 1 5 kh < 5indicate that the 
energy constraint cannot be satisfied for all combinations of a, and kh. In  the lubrication- 
theory region, i.e. kh < 1, E is independent of a. Thus the constraint can never be satis- 
fied and the analysis has no meaning there. 

and a decreases for a, > 0; while A V  decreases and a increases for a, < 0. For a 
sheet in a channel, the corresponding results are again very similar, the tendency 
being for slightly lower 1 a - a,] and I A Vl . 

Finally, let us consider the special case of an effectively sinusoidal sheet, 
a = 0, fixing c = c, and allowing n/n, = k /k ,  = b,/b to vary. The results, illus- 
trated in figure 6, indicate that, as kh decreases, the sheet must reduce the effective 
number of wavelengths. Thus the waves become larger owing to simultaneous 
increases in both amplitude and wavelength; and the beat frequency kc decreases. 

5.2. Lubrication theory 

For a sheet swimming in a narrow channel or near a single wall such that kh < 1, 
we have, using (53), (54), (60), (61), and (62), 

1 
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FIGURE 6. Lowest-order variation of A V  and n/n, with kh for a sheet with the rate of 
working fixed at  that for an isolated sheet. Here c = coo, blc = b ,k ,  and we have oon- 
sidered a sinusoidal sheet. viz. u = 0. 

Allowing variations in wave speed alone to satisfy AE = 1, c/cm and AV are 
determined from (67) and (66), respectively, cf. figure 4. In  figure 4, note the 
good agreement between the acceptable biharmonic limit kh - 1 and the lubrica- 
tion-theory results. Note also that A V  passes through an extremum as kh 
decreases. Indeed, it is readily shown that the extremal value is 

with h = 2b and c/c, = (3f) (bk)*( 1 + a2). Thus, if 1 - 23 < a < 1 + 24, this 
extremum is a maximum, cf. figure 7. Since V and E are independent of a in the 
lubrication-theory analysis, no optimization with respect to a is possible, cf. 
figure 5. However, if only the ivave size is allowed to vary subject to AE = 1, 
bk = b, k,, and constant effective length, cf. (62), we again determine that, with 
decreasing kh, A V increases as the effective number of wavelengths decreases. 

6. Discussion 
This paper is a simple study of whether or not a motile micro-organism can 

derive propulsive advantage from its proximity to a solid boundary or boundaries. 
The results of $5 suggest that such an advantage is indeed possible. An obvious 
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kh 

FIGURE 7. The presence of a A V  maximum, at optimal spacing h = 2b, for a sheet either in 
a channel 01’ near a single wall. Here b = b,, k = k, and the rate of working is fixed a t  
that for an isolated sheet. These examples are for cr. = 0. 

means of achieving this is a reduction in propagated wave speed, and thus beat 
frequency. For such a reduction, there exists an optimal separation distance of 
twice the wave amplitude. This spacing is optimal in that for certain wave shapes 
A V  is a maximum, though for other shapes i t  is a minimum. Likewise, changes 
in wave shape alone can abet or diminish propulsive velocity subject to a fixed 
rate of working. In  general, a small number of large waves is preferable to a large 
number of small waves, this condition being dependent, of course, upon the fact 
that pitching motions are neglected. 

The effect of the wall becomes significant when kh 5 5 ,  i.e. the separation 
distance decreases below the order of a wavelength. For kh 2 1, the propulsive 
velocity and rate of working are sensitive to changes in wave shape, transverse 
oscillations becoming relatively more important than longitudinal ones as kh 
decreases. Indeed, with decreasing kh, reversals in the direction of propulsion 
occur for certain shapes. 

It should be emphasized that this simple two-dimensional model simulates 
a micro-organism swimming parallel to a wall and beating in a plane perpendicu- 
lar to that wall. This is a very special case, since among those micro-organisms 
that propagate reasonably uniform planar waves, e.g. some sea-urchin sperma- 
tozoa, many tend to  roll owing to asymmetries in the head. It is often observed 
that, when flagellated micro-organisms such as spermatozoa are confined to 
swim in a thin lamina of fluid between a microscope slide and coverslip, their 
beat appears to be confined to a plane parallel to the walls, not perpendicular to 
them. Therefore,we must again caution that the applicability of these results is 
qualitative at  best. Preliminary studies of wall effects on the propulsion of flagel- 
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lates of finite length and width do suggest that increases in both propulsive 
velocity and rate of working occur (Lighthill 1974; Katz & Blake 1974). The 
tendency to be turned away from a wall has been demonstrated both theoretically 
and experimentally for sedimenting rods by de Mestre (1973) and de Mestre & 
Russel (1974). The author is presently engaged in obtaining cinemicrographic 
data with which to compare these results. 

I n  the context of spermatozoan transport within the male and female repro- 
ductive tracts, i t  is indeed true that the spermatozoa may at times be in close 
proximity to other solid, and possibly moving objects. Biharmonic analyses for 
wavy sheet models of such situations have been obtained, cf. Katz (1972) and 
Smeltzer (1972), and the author is presently completing the lubrication-theory 
analysis for several pertinent problems. However, it must be remembered that 
the scale of much of the activity of the male and female tracts is considerably 
larger than that of the spermatozoa themselves. Therefore, while mathematical 
extension of these methods to motile walls seems both attractive and tractable, 
obvious geometrical factors severely limit the applicability of the results. 

Comments from Prof. S. A. Berger and Prof. Sir James Lighthill are very much 
appreciated. The author gratefully acknowledges the support of a Population 
Council Postdoctoral Fellowship. 
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